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Global interaction of the boundary layer separating from an obstacle with resulting 
open/closed wakes is studied for a thin airfoil in a steady flow. Replacing the Kutta 
condition of the classical theory is the breakaway criterion of the laminar triple-deck 
interaction (Sychev 1972; Smith 1977), which, together with the assumption of a 
uniform wakeleddy pressure, leads to a nonlinear equation system for the breakaway 
location and wake shape. The solutions depend on a Reynolds number Re and an 
airfoil thickness ratio or incidence r and, in the domain Re& = O(1) considered, the 
separation locations are found to be far removed from the classical Brillouin-Villat 
point for the breakaway from a smooth shape. Bifurcations of the steady-state 
solution are found among examples of symmetrical and asymmetrical flows, allowing 
open and closed wakes, as well as symmetry breaking in an otherwise symmetrical 
flow. Accordingly, the influence of thickness and incidence, as well as Reynolds 
number is critical in the vicinity of branch points and cut-off points where steady- 
state solutions can/must change branches/types. The study suggests a corre- 
spondence of this bifurcation feature with the lift hysteresis and other aerodynamic 
anomalies observed from wind-tunnel and numerical studies in subcritical and high- 
subcritical Re flows. 

1. Introduction 
In spite of the great success in hydrodynamic theory brought about by the 

Kutta-Joukowski condition (Lamb 1932 ; Sedov 1965; Batchelor 1967), a fully 
attached flow on the aero/hydrofoil in a real fluid may still be considered an 
exception to the rule. Students of theoretical aerodynamics are all the more 
disappointed when they attempt to reconcile aerodynamic analysis with the 
boundary-layer theory and with experiments, especially for (chord) Reynolds 
numbers in the range Re = lo2-lo5 (see for example, Schmitz 1942; Althaus 1980; 
Mueller 1979, 1985). The inadequacy of the classical analysis clearly results from the 
lack of an interaction mechanism relating the boundary layer with its outer flow, and 
also from the steady-state assumption taken for granted in most studies. The present 
work will nevertheless be limited mainly to the global interaction problem in a steady 
flow resulting from laminar separation. 

Without taking the unsteady features into consideration, the applicability of the 
theory to aero/hydronautics must be very limited, inasmuch as a separated flow is 
believed to  be inherently unstable, and most aerodynamic measurements can furnish 
only the time- or the conditionally averaged unsteady data. The steady-state 
analysis is undertaken here, nevertheless, as an answer to a basic issue in theoretical 
aerodynamics : whether a steady separated flow may represent an asymptotic 
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solution to the Navier-Stokes equations (in the limit Re + C O )  beyond the stage of the 
classical boundary-layer breakdown (Goldstein 1948 ; Stewartson 1958), or simply as 
an alternative to an unseparated flow with a fully attached boundary layer (under 
the same flow conditions). A feature brought out by the present study is the 
multiplicity of the steady states which can occur in certain parts of the unit-order 
R e h  domain, which may explain hysteresis and certain aerodynamic anomalies 
occurring in subcritical flows. 

1.1 .  Flow hysteresis and non-uniqueness examples 

The results suggest a correspondence between the steady-state bifurcation and lift 
hysteresis commonly observed in low-Re flow, and that the steady-state bifurcation 
can occur in a strictly subcritical-Re flow. For a symmetric body/airfoil, the 
bifurcation can take the special form of symmetry breaking, generating lift on a 
symmetric airfoil a t  zero angle of attack, rather similar to the anomaly observed 
experimentally for thick profiles in the high subcritical Re-range (see figure 1 taken 
from Athaus 1980; also refer Schewe 1983). From the viewpoint of flow instability, 
the study should be useful in yielding a structure of the non-parallel flows, to which 
questions of global instability/receptivity (Morkovin & Paranjape 197 1 ; Goldstein 
1984) as well as wake breakdown (Brown, Cheng & Smith 1988) can be addressed. 

The triple-deck theory, which provides the key element of the present analysis, 
allows the boundary layer and its outer flow to interact in such a way as to render 
upstream influence and local separation possible. The formalism has been established 
through seminal works of Stewartson (1969), Neiland (1969), Messiter (1970) and 
others; the literature of its subsequent development is extensive (see reviews by 
Stewartson 1974, 1981; Messiter 1978, 1983; Smith 1982, 1986 and Sychev 1987). 
Sychev (1972) recognized that a triple deck on a smooth obstacle can produce a self- 
induced, local pressure gradient large enough for the laminar boundary layer to 
breakaway from the surface and to support a global (body-scale) wake structure 
consistent with Kirchhoffs (1869) model of an open wake. Sychev’s penetrating 
analysis was substantiated by Smith (1977, 1979) who solved numerically the 
reduced lower-deck problem and provided additional details for several regions of the 
wake interior. Certain key features in Smith’s study, including the length and height 
of a thin eddy far downstream of the obstacle, draw some support from a series of 
steady-state Navier-Stokes solutions computed by Fornberg (1980) for Re < 400, 
although the agreement is far from perfect. There also remain unsettled difficulties 
in the asympt,otic theory with the closure problem of the main eddy far downstream 
(Smith 1979). However, an alternative to this global structure, featuring a giant 
eddy of unit-order aspect ratio and a cuspidal closure (as in Sadovskii 1971 and 
Peregrine 1985), appears also to be mathematically admissible. Indeed, numerical 
solutions carried out by Fornberg (1985) to a Re-range higher than 400 indicate a 
strong preference for this alternative ; its likelihood has been substantiated to 
considerable detail in a subsequent study by Smith (1985), adopting the large-eddy 
model just mentioned. To be sure, the theoretical problem posed in these studies 
stipulates a symmetric flow pattern which could be realized only with the help of a 
splitter plate (endowed with a frictionless surface). Even if the Fornberg-Smith 
(1985) model could be accepted as a viable conjecture, the proposal does not rule out 
the thin-eddy model (Smith 1977, 1979) as its alternative, by virtue of the possible 
non-uniqueness-solution bifurcation. 
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FIGURE 1.  Section lift coefficient as a function of angle of attack for two symmetric NACA four- 
digit profiles at Re = 40000-150000 showing hysteresis and other lift anomalies: (a) NACA 0012, 
d l c  = 12%, e = 120 mm; (b )  NACA 0033, d / c  = 33.3%, c = 120 mm. The data were generated at 
the laminar wind tunnel at the University of Stuttgart (Althaus 1980). 
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1.2. Multiple steady states and symmetry breaking 
The possibility of having multiple solutions is not new to aerodynamicists familiar 
with lift hysteresis found in low-Re flows. I n  the framework of the present study, 
steady-state bifurcation can be brought out quite readily for thin obstacles in the 
domain R e h  = O( 1)  ; examples of the solution multiplicity have been given earlier 
for symmetric, thin airfoils (Cheng & Smith 1982). The simplicity gained through the 
theory for thin obstacles allows one to examine the possibility of symmetry breaking 
in an otherwise symmetrical flow, and to probe the bifurcating domain in the more 
general, asymmetrical cases. Open-wake solutions for airfoils based on this approach, 
including an example of symmetry breaking, were presented in several conference 
proceedings (Cheng 1984, 1985; Cheng & Lee 1985). The present paper focuses on the 
analysis of body-scale flows with closed wake which, together with the opcn-wake 
solutions, provide a more comprehensive description of the admissible steady-state, 
body-scale flows. Part of the results are discussed in Cheng (1986). To make the 
exposition more comprehensive, the open-wake analysis will be summarized and 
some of its more pertinent applications are also included for comparison. 

1.3. Forms of eddylwake closure 
As indicated, Smith’s (1985) formulation entails a cusp-shaped closure for the large 
eddy. There was a corresponding problem with a thin airfoil concerning the choice 
between a round (parabolic) end and a cuspidal end for the closure of a finite wake; 
but it follows from the drag analysis in Cheng & Smith (1982) that the round-end 
closure cannot provide a self-consistent, steady-state description. Cheng (1984) noted 
also that unless the stipulated scales for the flow velocity in the wake/eddy interior 
are changed, a closed wake with a round end would give rise to an extremely high- 
speed, re-entrant jet, leading to an unbalanced force on the closed wake itself. This 
leaves the cuspidal closure as the remaining viable choice for the steady body-scale 
flow, although a complete structure of the wake interior is lacking. This view receives 
support from the numerical findings of Rothmayer & Davis (1985) based on an 
interacting boundary-layer equation system ; their results suggest that the re- 
entrant jet may not be present in a finite eddy. Even if the re-entrant jet were 
present, their results tend to suggest that such a jet will have no significant impact 
on the qualitative features described by the closed-wake model of Cheng & Smith 
(1982) and Cheng (1984). (Whether a time-dependent wake featuring a re-entrant jet 
can reach a steady state in this case remains an unsettled issue.) The arguments in 
favour of a stagnant wake/eddy and their cusp-end closure are maintained in this 
study ; they may be considered as working hypotheses justified by their consistency 
with the steady-state model. The cusp-end closure appears to be in line with 
Smith’s (1985) choice for his large-eddy model, even though the possibility for a large 
eddy with a unit-order aspect ratio will not be considered in the present study. 

1.4. Realizability 
The realizability of the steady-state, laminar- breakaway model is most evident 
perhaps from flow visualization experiments in the Re = 103-104 range, cor- 
responding to the flight regime of insects, small birds, and indoor flying models. 
Figure 2 reproduces photo-records of streamlines about an airfoil made by H. Wed6 
(1974) in a flow visualization study in a water channel. The photographs, reproduced 
clearly in Van Dykes (1982), give streamline patterns a t  Re w 7000 for three attack 
angles. Their distinct streamline patterns lend strong support to the realizability as 
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FIGURE 2. Photo records of streamlines about a KACA 648015 section a t  Re x 7000 a t  three 
different attack angles reproduced from Wed6 (1974). Kote wake shape in (6) and the leading-edge 
eddy in (c). 

well as the stability of the steady-state, laminar description for small and moderate 
incidences in this Re-range. The wake structure in the middle photograph indicates 
a rather weak backflow, and the convergence of the upper and lower shear layers 
therein also indicates the possibility of a cuspidal wake closure. 

1.5. The marginal separation 
An important application of the triple-deck theory to laminar separation is the 
analysis for a marginal situation in which a minute separation bubble occurs well 
within the boundary layer, and to which the global breakaway description considered 
here is not relevant. The problem, termed ' marginal separation', has been accorded 
much significance with respect to the instability and turbulence transition in high 



260 C. J .  Lee and H .  K.  Cheng 

subcritical as well as supercritical aerodynamic flows (Schmitz 1942 ; Tani 1964; 
Gaster 1967; Mueller 1979, 1985; Carmichael 1981; Lissaman 1983); it is also 
believed to underline the practical success of high-lift airfoil designs (Liebeck 1973 ; 
Eppler 1978). The triple-deck analyses of the marginal separation (Ruban & Sychev 
1979; Cebeci, Stewartson &Williams 1980; Stewartson, Smith & Kaup 1982) and the 
subsequent instability studies (Elliot & Smith 1987) address their application to the 
onset problem of leading-edge stall. The inviscid-viscous interaction in this case does 
not involve a major alteration of the outer flow, and hence is strictly a local 
interaction problem. To distinguish them from the marginal separation just 
mentioned, the flows to be studied below (including both open and closed wakes) will 
be referred to either as laminar breakaway or as massive laminar separation. We point 
out in passing that sizable laminar separation bubbles are commonly observed on 
airfoils in the high subcritical and critical Re-range (Mueller 1979, 1985), which are 
far beyond the stage of a marginal separation, while features associated with wake 
and shear-layer instability are prominent. 

2. Assumptions and working hypotheses 
In the following, we state the several assumptions and types of flow models 

cofisidered, which define the logical limitations of our study. Tentative working 
hypothesis such as those concerning the wake/eddy model, as well as several 
requirements resulting from the model's limitations and hypotheses, will be examined 
below. 

We seek steady-state solutions to the problem of laminar breakaway in a slightly 
viscous, planar, incompressible body-scale flow. A triple-deck structure enclosing the 
separation point (Sychev 1972 ; Smith 1977) is assumed ; together with the eddylwake 
model, we stipulate that the body-scale flow so determined is consistent with the 
Navier-Stokes equations and non-slip wall conditions. 

2.1. Stagnant-wakeleddy models 
As noted earlier, photo records from flow visualization studies in many cases (Werle' 
1974; Van Dyke 1982) as well as numerical findings of Rothmayer & Davis (1985) 
suggest a weak recirculating current interior to a laminar bubble or wake; therefore, 
a uniform eddy pressure will be postulated as a leading-order description of the body- 
scale flow. In  the case of an open wake, this model is consistent with Kirchhoffs 
(1869) free-streamline theory (see Wu 1972) in which the wake pressure is taken to 
be that in the free stream p,, as was adopted in Sychev's (1972) original work. 

For both the closed wake (in which the free shear layers reattach themselves 
behind the wing) and the laminar eddy/bubble (in which the free shear layer 
reattaches to the airfoil surface), their closure geometry will be assumed to be of a 
cusp shape (on the body scale) as indicated earlier; more specifically, it is y cc ( 1  -x)i  
where x = I is the reattachment location. This appears to be consistent at least with 
the available photo records on the reattachment a t  Re = lo2- lo3 (Werle' 1974), and 
is not unfamiliar in the classical cavity-flow theory (see Southwell & Vaisey 1946; 
Lighthill 1949; Wu 1972). The crucial distinction between cavity-flow theory and the 
present analysis lies, however, in the separation criterion applied at the breakaway 
location which was either taken to be the Brillouin-Villat point (see $2.2 below), or 
simply disregarded. The criterion used in the present study is based on the triple- 
deck theory for the breakaway, which leads to significant differences from cavity- 
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flow analyses for flows about thin obstacles. Additional remarks clarifying the triple- 
deck's role in the subsequent and related analyses are given below. 

2.2. Triple-deck theory applied to thin obstacks 
2.2.1. Sychev's breakaway criterion 

Most fundamental among Sychev's (1972) results is the breakaway criterion on the 
pressure/velocity gradient of the body-scale flow, deduced from the solution to the 
reduced triple-deck problem. The argument leading to Sychev's criterion may begin 
with the recognition that, in approaching the breakaway location x = s from 
upstream, the surface pressure of the body-scale flow must behave as 

p - p ,  N -k(s-x)a, (2.1) 

where the constant of proportionality k is positive, and p ,  is the cavityleddy pressure 
downstream of x = s. In  above, x and s are normalized by the body scale c ,  and p and 
p ,  are normalized by twice the dynamic pressure based on the uniform flow speed 
directly over the eddy, i.e. puz. The above behaviour follows from a consideration of 
the complex velocity of the body-scale flow near the juncture x = s over a smooth 
boundary, where a Neumann condition a t  x < s (for an impermeable surface) changes 
over to a Dirichlet condition a t  x > s (over the eddy), which allows 

p - p ,  - -k(S-x)"+i 

for an arbitrary integer n.  But a negative n would yield an unbounded pressure, 
whereas a positive n gives a zero pressure gradient for which the boundary layer will 
not separate. This leaves n = 0, thus (2.1), as the only choice. Note that the pressure 
gradient (on the body scale) is infinite as x+s, according to ( Z . l ) ,  which is needed to 
provoke separation and breakaway in the triple deck. According to the triple-deck 
theory (e.g. Stewartson 1974), the variables ( p - p , )  and (s-x)  are small like c2 and 
e3, respectively, where 

Therefore, the constant k of (2.1) must be small like &. In  Sychev's analysis, k was 
expressed as a product of c$ and a fractional power of unit-order quantity A, which 
is the wall shear at x = s immediately upstream of the triple-deck normalized by 
puc/c44c. More precisely, it is 

where P is a unit-order constant determined from the theory (by matching the triple- 
deck solution with the square-root pressure/velocity behaviour of the body -scale 
flow (2.1)). Expressed more explicitly, Sychev's laminar breakaway criterion (2.1) 
takes the form 

Smith (1977) gave /3 w 0.44 after solving numerically the reduced triple-deck 
problem ; slightly lower values were obtained subsequently by Korolev (1980) and 
Van Dommelen & Shen (1983), with P = 0.42 and 0.41, respectively. 

2.2.2. Distribution between blunt and thin obstacles 
Since k, or the coefficient on the right-hand side of (2.3), vanishes in the limit c+ 0, 

the breakaway criterion could be identified with the location of a vanishing surface 
pressure gradient, or of the maximum surface speed (of the inviscid body-scale flow) 

k = PA&$, (2.2) 

p - p ,  N -PA' 8@(S ' - 2)i. (2.3) 
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unless the obstacle is thin with its thickness vanishing also with E .  To a first 
approximation, the breakaway location x = s in Sychev and Smith’s analyses for a 
circular cylinder is therefore the same as the Brillouin-Villat point in the classical 
cavitating-flow theory (see Wu 1972). This location can of course be determined from 
the inviscid body-scale flow with the criterion dpldx = 0, and does not depend on 
viscosity or Reynolds number. 

The breakaway criterion (2.3) and the triple-deck structure (centred a t  x = s )  are 
applicable also to airfoil-like thin obstacles, for which, however, the breakaway 
location cannot be generally identified with the zero-pressure gradient - the 
Brillouin-Villat point - as in Sychev and Smith’s examples. I n  this case, the leading- 
order breakaway location (x = s) and its existence will depend, in accordance with 
(2.3), on viscosity through the ratio of an obstacle thickness ratio 7 to €1,  called the 

7 = = R&. 

This parameter follows readily from (2.3), after one introduces the thickness ratio r 
to gauge the pressure perturbation (p -pc) on the thin obstacle, as will be made more 
apparent later. To determine the breakaway location and the leading-order body- 
scale flow in this case, the criterion (2.3) must be used along with other boundary 
conditions. Obviously, the thickness ratio r in (2.4) can be replaced by either an 
attack angle a or the airfoil camber G to give a rescaled attack angle di or rescaled 
camber 3, respectively. 

The range d = O( 1) pertaining to airfoils of thickness 7 = O(E$ 6 1 is the principal 
domain of the present study. As it turns out, the transition from a high f ,  
corresponding to a blunt body, to .? = 0 corresponding to an aligned flat-plate flow 
is not straightforward. Apart from a departure involving a trend reversal in the 
movement of the breakaway location as the thickness T reduces, occurring in a range 
d < d < 1 (Brodetsky 1923; Cheng & Smith 1982), a great deal happens in the unit- 
order d-domain (Cheng & Smith 1982; Cheng 1984). A feature representing a 
significant departure from Sychev’s original theory is the breakdown of the Kirchhoff 
open wake for d falling below a certain critical value (for each family of affinely 
similar shapes), below which other steady-state models with wake closure must be 
considered. A more significant aspect is perhaps the multitude of steady states 
brought out quite readily by the analysis for the unit-order f range. The solution 
bifurcationlbranching should not be too surprising for 7 = O(&, since the rescaled 
pressure is not generally a simple function of s in this domain, i.e. (2.3) is a nonlinear 
equation for the unknown breakaway location s. 

The cusp-shaped closure for the reattachment also implies a square-root pressure 
behaviour in the body-scale flow similar to (2.3), except that it applies at immediately 
downstream of the reattachment location x = I ,  with the algebraic sign in (2.3) 
changed to correspond to a favourable pressure gradient. The constant corresponding 
to ,8 in (2.3) is generally unknown for the reattachment; its determination would 
require in some cases the solution of a multi-structure problem similar perhaps to 
that in Daniel (1979) study which treats a special supersonic outer flow. It turns out 
that, for a certain class of simple shapes involving a closed wakeleddy to be 
considered below, a priori knowledge of this constant and the flow detail a t  
reattachment are not required for a complete determination of the steady body-scale 
solution, as will be seen in $3  below. 

One may observe, in passing, that  a parameter similar to the scaled attack angle 

12.41 
rescaled thickness ratio - 7  

€3 

& c €-;a (2 .5)  



Bifurcating laminar separation from thin obstacles 263 

mentioned above has appeared in the trailing-edge stall problem (Brown & 
Stewartson 1970; Melnik & Chow 1975) ; this is not too surprising since the triple 
deck around the flat-plate trailing edge considered is surrounded by a body-scale flow 
which is required to  behave near the trailing edge in accordance with (2.3). But the 
constant /3 therein differs slightly owing to the mixed, asymmetric inner boundary 
condition for the lower deck, unlike the impermeable inner conditions assumed for 
the entire lower deck in Sychev's model adopted here. Brown & Stewartson (1970) 
and Melnik & Chow (1975) identified a critical scaled attack angle dicr with the 
vanishing of wall shear a t  the trailing edge, whereas Smith's (1983) analysis suggests 
that  the point of vanishing wall shear can occur upstream of the trailing edge inside 
the triple deck a t  di > dicr. Whether a limiting solution from the trailing-edge stall 
study is consistent with the global structures analysed below is uncertain a t  present. 
The single-surface airfoil with shock-free entry considered in $5.2 and figure 14(a, 6 )  
will show that a range of di does exist, where the attached boundary-layer assumption 
stipulated in the three cited works can be satisfied on a global scale, and the 
consistency question may be examined in this case. We shall now examine the 
reduced boundary-value problem of the body-scale flow for several types of wakes 
and eddies, and describe briefly their solution procedures. 

3. The boundary-value problem for the body-scale flow 
3.1, The linearized outer problem 

The consideration of T ,  a or u in the order-& range permits linearization of the body- 
scale flow as in the classical thin-airfoil theory, subject to a relative error of order-e. 
The Cartesian coordinates (x, y) are used and normalized by c ,  with the x-axis taken 
to be in the free-stream direction and its origin at the leading edge. The streamwise 
and transverse perturbation-velocity components are u and v, both normalized by 
TU,. The obstacle will be referred to either as an airfoil or as a wing. The wing surface 
ordinates are expressed as 

y' = T f  *(x), 0 < x < 1, (3.1) 

where the superscripts + and - refer to the upper and lower surface, respectively. An 
angle of attack or camber is allowed inasmuch as symmetry in the airfoil geometry 
is not required, i.e. f +(x) + - f -(z) generally. As is common in classical airfoil theory, 
7 can be replaced by a or u as controlling parameter, if the latter effect prevails. 

3.2. Linearized forms for pressure, open wake, closed wake and eddies 

In linearized forms, the impermeable wing boundary condition reduces to 
v' = df */dx on the unseparated part of the wing surface, and over an eddylwake 
the boundary condition is u = u,, a constant. These boundary conditions may be 
analytically transferred to the corresponding segments on the upper and lower sides 
of the x-axis, according to  the standard practice of thin-airfoil theory (Glauert 1926 ; 
Ashley & Landahl 1965). We define the perturbation pressure to be the difference 
from the free-stream pressure ( p *  -p$ ) ,  i.e. pv"-,(p-p,). Thus, after linearization, 
(p-p , )  in (2.3) is linearly related to (u-u,) as 

P-Pc = -T(U-U,), (3.2) 

where u, over the eddy is related to the normalized cavityleddy pressure p ,  as 

Pc - P ,  uc = -~ 
7 

(3.3) 
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FIGURE 3. Classification of wake and eddy configurations in the body-scale flows, definition of 
the breakaway and reattachment locations, and the mapping from z- to [-plane. 

There will be as many values of u, as breakaway locations allowed in the global flow 
model. It is not known a priori whether, in the limit in which the wake length tends 
to infinity, the closed-wake model considered may yield p ,  +pm or u, -+ 0 to agree 
with Kirchoffs value for an open wake. One essential result brought out by the 
present study is that u, indeed vanishes as the wake length becomes unbounded. 

For a uniform free stream, the global problem is irrotational and reduces to finding 
a complex velocity dwldz = u - iv for the mixed boundary-value problem described 
above, which must also meet the requirements for the breakaway and reattachment 
behaviour. Figure 3 (a-e) illustrates the boundaries and solution domains for five 
types of wakes and eddies in the plane z = x + iy and also in a transformed c-plane 
where the asymmetrical body-scale flow can be more effectively solved as a half- 
plane problem. Global flow models allowing similar but more intricate wakeleddy 
structures can be constructed, requiring more complex analytical details, however. 
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3.3. Application of the laminar breakaway criterion 

The linearization of the equations governing the body-scale flow not only provide a 
simpler boundary-value problem to be solved, but greatly reduce the work of 
evaluating the wall shear parameter h in (2.3), which would otherwise require 
integrating the non-self-similar boundary-layer equation up to the breakaway point. 
Since the velocity field about an airfoil on the body scale is only slightly perturbed 
from a uniform flow, the flow speed a t  the boundary-layer outer edge can be taken 
to be U,, subject to a relative error of order 7. This linearization procedure breaks 
down however in the vicinity of the leading edge (Lighthill 1951 ; Van Dyke 1975) ; 
we assume that the (relative) error in the boundary-layer calculation a t  x =I= 0 
resulting from this breakdown is no worse than that in the thin-airfoil theory. Taking 
the leading-edge radius to be of order r2, this region of non-uniformity is x = O ( T ~ ) ,  
being comparable with e in the parameter domain of interest. In  the meantime, a 
consistent linearization of body-scale flow together with the triple-deck breakaway 
criterion requires s to  be sufficiently far removed from the leading edge as well as 
from the trailing edge. This consideration would require the breakaway location to 
fall into 

€3 e e 1-2, 

recalling that e3 is the streamwise triple-deck lengthscale. Taking the leading-edge 
non-uniformity also into account, the range of s where the linearized breakaway 
condition (2.3) can be applied without inconsistency should then be 

E 4 s < 1 -e3. (3.4) 

With this provision, the attached boundary layer can be determined from the Blasius 
self-similar solution, up to x = s, the first breakaway on each side of the airfoil. The 
value of h in (2.3) may thus be taken to be the Blasius value h = 0.332. Therefore, 
a t  the first breakaway location, criterion (2.3) will be simplified to 

where u is the real part of dwldz mentioned earlier. For a body-scale flow involving 
more than one breakaway location on the same side of the airfoil, as in figures 3 ( d )  
and 3(e ) ,  the constant h must be re-evaluated (at s3 and s4 in figures 3d,  3e)  for the 
boundary layer downstream of a reattachment point (Z1 or I, in figures 3d,  3e) .  

3.4. The requirement on the far Jield and also on wake and eddy closure 
The enforcement of the appropriate solution behaviour at JzJ+co and at the 
wakeleddy closure point z = 1, together with the criterion a t  each breakaway 
location, is essential to the determination of the steady-state solution for type ( a ) ,  (b)  
and (c )  flows of figure 3, and to the final reduction to a single-parameter solution 
family for type ( e )  and ( d ) .  For the far field with an open wake, the behaviour 

-ik, 
u-iv - - 

ZP 

is imposed, where k, is required to be a real and positive constant to be expressible 
in terms of the wing geometry and s1 and s2, etc. (cf. figure 3 ) ;  this requirement 
assures a pair of Kirchhoff streamlines in the far wake. The vanishing of k ,  signifies 
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the breakdown condition for the Kirchhoff-wake model and has been referred to as 
‘wake cut  off’ (Cheng & Smith 1982). For a closed wake or the case without a wake, 
a doublet behaviour in the far field is appropriate : 

u-IV . ---+o($), i T  
27t z (3.7) 

where the constant r is identified with the circulation and must be real. 

point to  be 

where m is a constant to  be determined by the final solution and must be positive and 
real to assure a cuspidal closure. 

The eddy-closure model discussed earlier requires the behaviour near the closure 

u-iv - const.+m(z-~)f, (3.8) 

3.5. Determination of the breakaway and reattachment location : solution strategy 

We adopt Carleman’s (1922) technique to solve each of the half [-plane problems (cf. 
figure 3), which permits an explicit expression for dw/dC = @-iV, where 42 and 
-Y are the real and imaginary parts of dw/dC, in terms of the real and imaginary 
parts of dwldz alternately prescribed over the real c-axis (Cheng & Rott 1954). The 
behaviour a t  the breakaway and reattachment locations according to (3.5) and (3.8) 
requires a square-root singularity a t  each of the junctions [ = tl, c,, &, .. . etc. on t h e  
real [-axis, corresponding to each of the x = sl, s,, . .., I,, I,, ... etc. on the upper and 
lower segments on the real z-axis. Let 

H(C) [ ( C - L )  (C-f;,) ( C - U  ..- ( C - t N ) ? Q ( C ) ,  (3.9) 

where Q(f;) is a quotient of polynomials which may be needed to suit the desired 
behaviour of dw/d[ a t  some locations in the [-planc other than the vicinities of &. 
The expression sought is 

(3.10) 

where the source-like function q(c) is 

over the segment of 6 where H(E) is real and imaginary, respectively. It is understood 
that the boundary values for Y and @, as well as H ( 0 ,  are taken along the upper side 
of the real axis, and that the distribution q ( ( )  is real. Application of (3.10) to the 
requirement on dw/dz a t  Iz( + co and to the breakaway criterion at each of sl, s2, . . . 
provide the needed equations for determining sI,s,, ..., I,, I,, ..., for type (o,), ( b )  and 
(c )  flows. We point out in passing that, instead of solving for dwldg = @ - iV, we can 
solve for dw/dz = u-iv also in the half-f;-plane, since u and v remain conjugate in the 
transformed plane. 

Velocity Jield for type (a) wakes 

For a type (a) open wake of figure 3, with the mapping 

< = $, (3.11) 

there are two junctures 5 = 6, = -s t  and < = (, = sk on the real axis. Over the 
segments 5 < t1 and 5 > 6, corresponding to  the Kirchhoff streamlines, the real part 
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of dw/d[ is zero; and over 6, < 6 < t2 corresponding to the part of the airfoil with 
attached boundary layer, the imaginary part of dw/dC is 

V ( 6 , O )  = -26~;(6') a t  El < 6 < 0 

= -25u,f(L3 a t  0 < 5 < &, 
where w$(x) = d f */dx. The complex velocity dwldz satisfying the far-field behaviour 
(3.6) may then be written in this case as 

(3.12) -- dw - -i[K-61) (C-62)I i  YUO((5')) d5' 
dz 7cL- lk2-5.) (5'-61)1+C-E') 

with VO((0) = %(6') at 51 < 6 < 0 

= u; ( t2 )  a t  0 < 6 < t2. (3.13) 

The constant of proportionality k, in (3.6) can be evaluated from 

(3.14) 

which is required to be positive for an open wake. Application of the breakaway 
condition (3.5) leads to two nonlinear equations for the determination of s1 and s2 for 
a given .? and w,'(x) : 

(3.15) 

(3.16) 

where p = (0.332):p. 

Velocity field for  type (b) wakes 

For a type ( 6 )  closed wake of figure 3, the reduced half-plane problem may again 
be made to allow two juncture points on the real axis. The mapping in this case, 
adopted from Wu's (1972) analysis of cavitating thin hydrofoils, is 

(3.17) 

where M is a real and positive constant. It maps the closure point z = 1 to l[l --f co , and 
IzI + 00 to a point on the imaginary axis 5 = a. The breakaway points on the lower 
and upper surfaces s, and s1 are mapped to 

t l=M- S5 Si 
1 ,  6 2  = -M- 

(1 - s2)P (Z-s,)d 

respectively. For this problem, it proves expedient to solve directly for the conjugate 
pair (u, v) in the C-plane. Thus over cl < 6 < &, w = vo((E)), and u = u, elsewhere on 
the real axis. In  this case, we choose I?([) in (3.9) to be 

(3.18) 
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The function u - iv may now be expressed as 
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where the first and last integrals can be evaluated analytically so that 

dw 
dz 

- iu,[(g- t,) (5- <,)I; csin 0 + M cos 0 

5 [(M" + 612) (M2 + 63P 
= u,+ - 

with 0 = i(6,+8,), 8, = x+ tan-' (M/&,),  and 8, = tan-l (M/E,).  
Application of the breakaway criterion a t  z = s, and x = s2 (transformed to 5 = 6, 

and 6,) together with the solution behaviour required for {+ iM and 151 + 00 suffice 
for the determination of the four quantities s,, s,, u, and 1 for a prescribed f *(x) for 
a specified resealed thickness ratio +. 

Velocity field for type ( c )  flow 

The wakeless type ( c )  with a mid-wing eddy may be treated like type (b ) ,  with the 
same transformation (3.17) except that the closure-point location x = 1 therein is 
replaced by the trailing-edge position x = 1 : 

(3.20) 

The four unknown locations s,, s2, 1, and 1, (see figure 3c) and two eddy pressures (or 
uC1 and uc2) can be determined by requirements corresponding to the two breakaway 
conditions a t  x = sl, s,, the non-source behaviour in the far field a t  IzJ + CO, with 
cuspidal reattachment a t  x = I,, 1, and the Kutta condition a t  x = 1.  Examples of 
type ( c )  have been studied in Cheng (1984) for symmetrical flows about symmetric 
airfoils. 

Type ( d )  open-wake flow: indeterminacy 
The complex-velocity field of type ( d )  flow in figure 3, which allows a second 

breakaway on each side of the airfoil to form an open wake after reattachment, can 
be constructed in the upper half-plane of 6 = zi in a manner similar to the type (a,) 
flow, following Carleman's (1922) approach. In  this case, the function H ( 6 )  of (3.9) 
will be taken as a product of six roots at 6, = -si, 6, = -li, t3 = -sa, 6, = si, 
t5 = 1; and 6, = sg, corresponding to the breakaway and reattachment points. Over 
5 < 5, and 6 > t6 on the real axis, 42 must vanish ; over 6, < t < &, 42 = 2&, ; over 
t4 < t < t5, 42 = 25uc2; over the remainder of the real axis, -Y- = v,,((&')) defined in 
(3.13). The six root locations and two eddy pressure or ucl and uc, are the eight 
unknown constants to be determined for prescribed affined ordinates f* (x )  at a 
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specified 7". But this construction gives a behaviour of dwldz in the physical far field 
(121 + OC)) of the form 

dw 1 dw ccc - - - -- - A ,  2; +B, + --i-+. . . 
dz 2cd5 2% 

(3.21) 

The Kirchhoff open wake so stipulated therefore requires (cf. (3.6)) that 

A,=B,=O (3.22) 

and that C ,  be negatively imaginary. These, together with the four breakaway 
criteria a t  5 = sl, s2, s3 and s4 furnish six conditions for the determination of the eight 
unknowns noted above. Thus two degrees of freedom remain with this steady-state 
model. The system could be closed with a specification of either the eddy pressure, 
i.e. uc, or the eddy length 1 for each mid-wing eddylbubble. 

One may argue that the indeterminacy of the global description may reflect the 
need for a reattachment criterion derived from a local inviscid-viscous interaction of 
the reattaching shear layer, wall boundary layer, and the recirculating eddylbubble. 
This specific knowledge is lacking even for the relatively simple case involving a 
supersonic external flow (see Daniels 1979). An attractive approach to this 
indeterminacy is to study the global instability of this body-scale description, and to 
identify the stable or the least unstable configurations. However, this line of enquiry 
can a t  best provide an inequality among the flow parameters, and is therefore not 
helpful in the solution determination for the steady states. 

Cheng & Lee (1985) considered a special version of the flow type which invoked an 
open wake with the breakaway and reattachment occurring only on one side of the 
airfoil. Apart from the indeterminacy note above, complication and uncertainty in 
analysing this type of flow model arises in the evaluation of the h in (2.3) for the 
second breakaway, which is the normalized wall shear immediately upstream of the 
triple deck and has been taken to be 0.332 in (3.5). For the second breakaway 
downstream of a reattachment on the surface, the boundary layer can no longer be 
described by the Blasius solution even under the simplification for a nearly uniform, 
external flow. In the absence of an appropriate non-self-similar solution for the 
determination of h a t  the second breakaway, Cheng & Lee (1985) proposed a value 
based on a plane half-jet solution (Lock 1951) with the jet origin set a t  the upstream 
reattachment point. Their stipulation is yet to be substantiated by a more thorough 
analysis of the reattachment process, unavailable to date. 

Type ( e )  closed-wake flow 
The velocity field of this type of body-scale flow (cf. figure 3 e )  can be studied in a 

manner similar to that for the closed-wake type (b) ,  using the same mapping (3.17). 
The three unknowns, e.g. sl, I ,  and ucl, associated with each eddylbubble on the 
wing, by virtue of the stronger attenuation requirement in the fair field, (3.7), will not 
introduce indeterminacy as occurred for type ( d )  with an open wake. The 
complication and the uncertainty in evaluating A at the second breakaway remain, 
however. 

In  view of the indeterminacy and uncertainty encountered in the analysis of type 
( d )  and (e)  flows, the examples of body-scale flows to be studied below will be limited 
to  the simpler model types ( a )  and (b) .  As noted, examples of type (c)  have been 
considered for symmetric cases ; asymmetrical type ( c )  solutions have not been 
studied. 
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4. An example of open and closed wakes: a model Joukowski profile 
Examples of symmetric airfoils were studied in Cheng & Smith (1982) to illustrate 

the Kirchhoff-wake breakdown and multiple solutions of the open and closed wakes. 
The bifurcating steady states which allow asymmetrical solutions with lift were 
investigated in Cheng (1984, 1985), and Cheng & Lee (1985). With the exception of 
symmetrical cases a t  zero lift, cited studies have been restricted to the open-wake 
type ( a )  flow. In  the following, the asymmetric solutions with the type ( 6 )  closed 
wake will be added to t,he multiple solutions for the symmetric model Joukowski 
airfoil, making the analysis of the bifurcating states more complete. 

4.1. A model symmetric Joukowski airfoil 
The particular profile considered has a symmetric cross-section with a round leading 
edge and a sharp trailing edge: 

?J=&7X4(1-X)(1+(7X) 

for which a relatively simple solution form can be obtained for type ( a )  open-wake 
flow. The normalized upwash on the unseparated portions of the upper and lower 
wing surfaces, allowing an angle of attack, is 

a 1  
7 2xz 

.$(4 = -f---i[1-3(1-C)x-5Cx2]. 

The particular case to be analysed in detail is one with C = - 1, that is 

a I  
y = -&7x"l-x)* 

7 

This profile has a leading-edge radius of O(?) and a cusp-ended trailing edge at 
x = 1, it may hence be regarded as a model of a Joukowski airfoil. The following 
will examine the multitude of these asymmetrical results for type ( a )  open wakes 
and study a broader class of asymmetrical flows including type ( 6 )  closed wakes. 

4.2. Stipulations to be veri$ed: unseparated JEow as a n  alternative 
Stipulated in the problem formulation is that the breakaway streamline cor- 
responding to the free shear layer does not intersect the wing surface. This is not 
guaranteed however by the boundary condition u = u,, over the separated 
streamline. Another stipulation implicit in the formulation for the global problem is 
that the boundary layer remains attached until reaching the neighbourhood of the 
breakaway point. Both of these assumptions should be verified a posteriori, if the 
solution obtained from the asymptotic theory is to  represent a physically meaningful 
steady state for a specified 7 or Re. One may recall that  the asymptotic (triple-deck) 
theory underlying the present analysis holds for a finite .? = Re"7 =!= 0 in the limit 
Re+ co or 7+0. In  this limit, the flow speed a t  the boundary-layer outer edge is 
u* = U,, and the boundary layer should not separate, a t  least upstream of the triple 
deck. Separation and breakdown of the boundary layer could nevertheless occur 
upstream of the triple-deck in the domain of .? = O(1) for some 7 + 0 which is not 
small enough to allow the approximation u* = IJ ,  a t  the outer edge. 

It is essential to observe that, for a family of affinely similar profiles a t  a fixed a/. 
in (4.1), a fully attached laminar flow can exist for a sufficiently small thickness ratio 
7. This is because the condition for separation in a two-dimensional boundary layer, 
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FIGURE 4 FIGURE 5 FIGURE 6 

FIGURT 4. The breakaway streamlines from a model Joukowski airfoil for the reduced thickness 
i = Remr = 0.2 a t  three angles of attack according to open-wake solutions on the central branch. 
( a )  afr = 0, C L / r  = 0;  (b) ufr = 0.25, C L / r  = -0.0538; (c) afr = 0.517, C L / r  = -0.2471. 
FIGURE 5. The breakaway streamlines from a model Joukowski airfoil for the reduced thickness 
i = 0.2 at three angles of attack according to open-wake solutions on the lower branch. (a )  a / r  = 0, 
CLfr = - 1.2755; (b) a / r  = 0.25, CL/r  = -0.8460; (c) u / r  = 0.48, CLfr = -0.4081. 

FIGURE 6. The breakaway streamlines from a model Joukowski airfoil for the reduced thickness 
7" = 0.2 at three angles of attack according to open-wake solutions on the upper branch. (a )  a / r  = 0, 
CLfr  = 1.2755; (b) ufr = 0.075, CLfr  = 1.4014; ( c )  u/r  = 0.175, C L / r  = 1.5415. 

according to the normalized form of the boundary-layer equations and boundary 
conditions, is controlled by the pressure distribution in the outer flow, or more 
precisely by (ap/ax)/pu&C1, and hence by the thickness ratio 7. For r + 0, a 
maximum thickness ratio for an attached flow corresponding to the first appearance 
of a zero wall shear, or marginal separation, can be determined (for a fixed a/.), 
independently of the Reynolds number Re or the scaled thickness ratio ?. Hence, for 
a thickness ratio r less than this value, a fully attached flow should be possible along 
with the other steady-state separated flows analysed below. 

4.3. Three solution branches for  an open wake 
The model symmetric airfoil (4.1) has three solution branches for a type (a )  open 
wake. One, to be called the central branch, gives a symmetrical flow pattern at zero 
incidence, and the other two, to be referred to as the upper and lower branches, yield 
(non-zero) lifts a t  zero incidence, providing an example of symmetry breaking. The 
breakaway locations on the upper and lower surfaces, s1 and s2 respectively, are 
determined as functions of f  = R e h  for several values of incidence to thickness ratio 
a/r .  For small and moderate a/., the two locations s1 and s2 in the central branch 
differ only slightly, giving a nearly symmetric flow pattern and hence little lift. In  the 
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FIGURE 7. Breakaway locations (sl and s ~ ) ,  closure locations ( Z ) ,  and the normalized eddy pressure 
( -uc) over a model Joukowski airfoil of reduced thickness i = 0.2 as functions of incidence-to- 
thickness ratio according to a closed-wake solution. 

other two branches, s, and s2 are wide apart; the lower branch with s1 < s2 gives an 
appreciable negative lift. Note that the portion of attached flow is large on the lower 
side in this case. The upper branch with s1 > s2 has a positive lift. Numerical details 
for this open-wake case have been discussed in Cheng & Lee (1985), and will not be 
repeated here. To illustrate the departure from a fully attached flow, the streamlines 
representing the free-shear layer leaving the breakaway points are shown for 7" = 0.20 
in figures 4-6 for each of the three solution branches a t  different values of a/r .  The 
result for the central branch a t  a = 0 in figure 4(a)  may be identified with the 
classical Kirchhoff streamlines. The corresponding lift characteristics, C, vs. a, will 
be studied together with the closed-wake results later, in $4.5. 

4.4. Solutions with closed wakes 
Steady-state solutions of type ( b )  featuring a closed wake exist in a certain domain 
of 7" and a/r. The results presented in figures 7-12 illustrate the body-scale flows of 
this type about the model Joukowski airfoil (4.1) at incidence for three different 
reduced thicknesses, 7" = 0.20, 0.373 and 0.45. 

4.4.1. Breakaway locations, wake length and eddy pressure 
The basic information on the solutions for 7" = 0.20 is given in figure 7 where the 

upper and lower breakaway locations, s1 and s2, the closure location I ,  and the eddy 
pressure -u, are presented as functions of the incidence ratio a/r.  As the attack 
angle increases, s1 and s2 move downstream and upstream respectively, thus 
increasing the lift. Only the positive range of a/r  is shown ; the corresponding results 
for the negative a/r  can be obtained by simply replacing a/7 with -a/r and 
interchanging s1 and s2 in the same plot. The range of a/r  for the closed-wake solution 
is seen to be rather limited in this case. Over the incidence range 0 < a/7 < 0.18, the 
wake lengthens slightly with increasing incidence. Between 0.18 d a/r  < 0.22, the 
closed-wake solutions have multiple values (bifurcate) ; while the lower branch of 1 
continues to increase with a/r  for a/r  > 0.18, the upper branch of 1 decreases from 
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FIGURE 8. Breakaway and closure locations, and eddy pressure over a model Joukowski airfoil for 
two reduced thickness ratios, (a) i = 0.373, ( b )  i = 0.45 as functions of incidence-to-thickness ratio 
according to a closed-wake solution. 

infinity (at a/r 0.18) as a/r  increases. Thus the branch with the higher I signifies 
a continuation of one of the type ( a )  open-wake solutions after the Kirchhoff wake 
breaks down. This will be more clearly brought out in the discussion of figure 11 on 
the lift. The value of -u, is seen to change very little with a / r ,  indicating also that 
the eddy pressure remains slightly above the free-stream level in this example. 

Figures 8 ( a )  and 8 ( b )  present the corresponding results for a thicker profile, .? = 
0.373 and 7” = 0.45 respectively, showing a rather different behaviour with respect to 
incidence change. The wake shortens instead of lengthens with increasing a / r ,  
approaching closely to the trailing edges (x = 1) a t  a/r  = 0.419 for .? = 0.373, and at 
a/r  = 0.284 for .? = 0.45. The breakaway location on the top surface s1 also moves 
toward the trailing edge for increasing a/r ,  while the location s2 on the lower side 
moves forward. Another feature differing from figure 7 is the noticeably higher eddy 
pressure level as indicated by -uc, and its variation with the angle of attack for these 
two cases. 
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FIQURE 9(a,b) .  For caption see facing page. 

4.4.2. Surface pressure, wake shape, and the boundary layer 
As noted earlier, it is essential to ascertain that the breakaway streamlines do not 

intersect the surface in this case and that the boundary layer under the adverse 
pressure gradient remains attached upstream of the triple decks. Wit,h this in mind, 
the surface pressure and wake shape are computed from data based on the closed- 
wake solution for the body-scale flow, and shown in figure 9 (a-e) for the model airfoil 
with .? = 0.20 for four values of a/?;  a/? = 0, 0.0873, 0.1571 and 0.2094. The closed- 
wake model with a/? = 0.2094 yields two solutions consistent with the bifurcated 
range indicated earlier for this case (see figure 7) .  

Each breakaway streamline in figure 9 (a-e) is seen to leave the surface smoothly 
and to not intersect or touch the surface a second time; the upper and lower 
streamlines meet downstream tangentially in the form of a cusp, as required. The 
surface pressure (or the surface u) distribution exhibits the required square-root 
singularities a t  the breakaway locations for the body-scale flow. The large adverse 
gradients next to the leading edge were an exaggeration resulting from the local 
breakdown (non-uniformity) of the linearization discussed earlier. Interestingly, not, 
only is the wake in the upper-branch solution for a/? = 0.2094 rather long (1 = 
5.179), approaching a Kirchhoff description, but the corresponding wake pressure 
also recovers close to the value stipulated in the Kirchhoff model (u, = 0). Results 
similar to those of figure 9 ( w e )  have also been obtained for the thicker profiles with 
.? = 0.373 and 0.45. They are omitted to conserve space, except for the breakaway 
streamlines in figure 10(a) which are shown for .? = 0.373 at a/? = 0.4189 
corresponding to a branch point and in figure 10(b) for .? = 0.45 at  a/? = 0.2836 
which is also a branch point. The results suggest that  they could be continued for a/? 
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FIGURE 9. Breakaway streamlines and normalized surface pressure, u, over a model Joukowski 
airfoil of reduced thickness ? = 0.2 according to a closed-wake solution at four different angles of 
attack: ( a )  a / r  = 0, C,/ t  = 0 ;  ( b )  a/7 = 0.0873, C,/t  = 0.5105; (c) a/7 = 0.1571, C,/t = 0.9400; 
( d )  a / r  = 0.2094, C,/t  = 1.3206; ( e )  a/7 = 0.2094, CJt = 1.5346. Kote that ( d )  and ( e )  belong to 
different branches of the closed-wake solution and that the airfoil ordinates shown have been 
roughly doubled in order t o  exhibit more clearly the streamline geometry. 

beyond the indicated value in a form belonging to the type (c ) ,  with a single eddy on 
the wing for ? = 0.373, and with two eddies on the wing for .?: = 0.45, while the 
reattachments occur near x = 1. Figures 10(a) and 10(b) suggest that a rather long 
shallow bubble would appear on the lower side of the airfoil anterior to the trailing 
edge. 

For type (b )  closed wakes, symmetry breaking is not found a t  a = 0, but these 
solutions obtained for .? = 0.20 appear to  match well with the upper solution branch 
of the type (a )  open wake which break the flow symmetry at zero incidence. The good 
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U / T  = 0.4189 SI = 0.9390 L = 1.0118 
CL/T = 2.5501 S, = 0.5419 U, = -0.2654 

4 7  = 0.2836 s1 = 0.8979 L = 1.0013 
CJT = 2.6442 s2 = 0.6655 U, = -0.2551 

FIGURE 10. The streamlines on a closed wake leaving the model Joukowski airfoil of reduced 
thickness (a) .7 = 0.373 at an angle of attack corresponding to a/. = 0.4189, and (b) i = 0.45 at 
an a/7 = 0.2836. 

match between types (a )  and ( b )  will be seen more clearly in a study of C, vs, a. To 
ascertain the existence of a fully attached boundary layer upstream of the triple 
deck, a solution could be obtained numerically by integrating the parabolic 
boundary-layer equation with the surface pressure data shown in figure 9 (a-e). 
Instead, the shape factor ‘ A ’  (not to be confused with h in ( 2 . 2 ) ,  (2.3)) or ‘K’  in the 
classical integral method (Schlichting 1979) has been computed as function of x in the 
course of this study for each of figures 9 (a)-9 ( e )  ; this may suffice for the present 
purpose, as long as the h or K so computed is not too close to its critical value for 
separation. According to Thwaites (1960), separation is anticipated at  a location 
where K falls below -0.082, or below -0.1567, according to Holstein & Bohlen 
(1940). As noted earlier, the boundary-layer solution is controlled by the thickness 
ratio r ,  not the reduced thickness ratio ?; a T = 0.112 was therefore chosen for the 
computation of K ,  which corresponds to Re = lo4 for .? = 0.20. The chordwise 
distributions of the shape factor K computed is not presented here, to conserve space, 
but it should be mentioned that, in spite of the high adverse gradient a t  x = 0 and 
a t  s1 and s2, the shape factor k never falls below -0.082, corresponding to separation 
in each case tested. The lowest K value reached (at the breakaway) is typically 
-0.06, indicating attached boundary layers upstream of s1 and s2 in all cases 
examined. 

4.5. Bifurcation of steady-state lift 
The foregoing analysis is best summarized in terms of the lift and angle of attack, or 
more precisely, CL/r  vs. a/r ,  for a fixed -? = ReAr, where the multiplicity of the steady 
states represented by different wake configurations as well as the bifurcation of the 
open- and closed-wake solutions themselves can be simultaneously studied. 

An example is given in figure 11 for the reduced thickness ratio ? = 0.20, where the 
upper and lower branches for type (a )  open wakes are shown as (thin) solid curves, 
the central branch of type (a) is shown in (thin) dashes, and the type ( b )  closed-wake 
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FIQURE 11. Alternative steady-state lift of a model Joukowski airfoil of reduced thickness 7" = 0.2 
as a function of incidence-to-thickness ratio according to solutions from the upper and lower 
branches for open wakes (solid curve) ; from the central branch for open wakes (dashed) ; from the 
upper and lower branches for closed wakes (heavy solid curve) ; and the fully attached flow (dotted 
line). 

solution (branch) is shown as heavy solid curve. The CL/r in the negative a/r  range 
(not shown) is simply that presented in figure 11 with the algebraic signs of C, and 
a changed. Whereas the closed-wake branch cannot support symmetry breaking in 
this case, it connects up with the symmetry-breaking, upper open-wake branch a t  
the cut-off value of a/r  for the Kirchhoff wake (see figure 11) .  The lower open-wake 
branch with negative lift is seen to merge with the central open-wake branch at  a 
small negative CL/r near a/? = 0.50 where a noticeable gap is left, however, by the 
computation in the right lower quadrant ; whether changing over to other wake/eddy 
configurations would fill this gap is uncertain. 

Accepting the fully attached flow as another admissible solution for a sufficiently 
thin airfoil a t  small enough incidence (for the reason given earlier), figure 11 then 
furnishes three positive and two negative (alternative) values of lift in the attack 
angle range 0 < a/r  < 0.22, and one positive and two negative lift values in 0.22 
d a/r  < 0.53. The dotted line has the ideal slope 27c and corresponds to a fully 

attached flow according to the thin-airfoil theory. The presence of a closed-wake 
branch signifies that  there will be a t  least one steady state involving laminar 
breakaway, in which, by virtue of its closed wake, the inviscid (pressure) drag is 
reduced to zero as for a fully attached flow. The slope dC,/da of the closed-wake 
solution turns out to be surprisingly close to 27c. The upper and lower open-wake 
branches represent a continuation of the two symmetry-breaking stages into the 
domain of a + 0;  as such, i t  signifies that the solution pair a t  a = 0 is not isolated and 
has a rather extensive neighbourhood. Unlike the central open-wake branch, the 
incidence response, dC,/da, in these two branches (though small) is by no means 
totally lost. 

As one follows the upper open-wake branch and passes the cut-off point into the 
upper closed-wake branch in the direction of increasing u/r ,  a pressure drag 
reduction is anticipated (if the steady state can be realized), while the lift is found to 
decrease slightly, and soon a branch point is reached a t  a/r  x 0.22, from which a 
smooth continuation on the (lower) closed-wake branch can be achieved only by 
reducing a/?; a continued increase of a/r  beyond 0.22 can result only in jumping off 
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FIGURE 12. Alternative steady-state lift of a model Joukowski airfoil of reduced thickness (a,) i = 
0.373, and ( b )  i = 0.45 as a function of incidence-to-thickness ratio according to solutions from the 
upper and lower branches for open wakes (solid curve) ; from the central branch for open wakes 
(dashes), from the closed wake (heavy solid curve) ; and the fully attached flow (dotted line). 

either to the other branches or to the fully attached solution (the dotted line). If the 
central branch proves to be (dynamically) unstable, the transition to the lower 
branch would involve a drop from the high-lift (closed-wake) branch to the lower-lift 
(open-wake) branch. This would constitute a part of the clockwise hysteresis loop, 
provided the two branches in question are stable, or more appropriately, bistable 
(borrowing the language of Schewe 1983). The foregoing description has thus 
furnished a few more details (for 7 = 0.20) about the scenario of such a transition. It 
would accordingly involve a wake shortening and a gradual lift reduction before a 
drastic reversal of lift direction. In the meantime, a scenario of switching from one 
stable state to another a t  any O ~ / T  in response to external excitations may likewise 
be envisioned. The ranges of 01 allowed by 0 < la/r1 < 0.22 for 7" = 0.20 is rather 
limited, however, being comparable to (a1 < 1" for a T = 0.10. The variety in the 
incidence response demonstrated here may nevertheless be compared with the 
anomalous behaviour (and the uncertain nature) found near zero lift recorded for 
NACA 0012 a t  Re = 4 x 104-8 x lo4 in Althaus' (1980) experiment. 

Corresponding plots of C L / r  vs. a/r  for the thicker profiles, 7" = 0.373 and 0.45, are 
shown in figures l2(a)  and 12(b). These closed-wake solutions cannot be connected 
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FIGURE 13. (a )  Model of a subcritical body-scale flow about a single-surface airfoil with a leading- 
edge bubble and an open wake with one laminar-breakaway point on the upper surface. ( b )  Model 
of a subcritical body-scale flow of an inclined flat plate. 

(continuously) with the open-wake solution a t  the ‘cut-off’ as it was for 7 = 0.20 in 
figure 11, owing to the convergence of the closure point to the trailing edge (x = 1) 
for a/r  increasing beyond 0.419 and 0.284 (see figures 8a and 8 b ) .  The model of type 
( c )  is apparently a candidate for such a continuation, as noted earlier. I n  view of the 
cut-off occurring in the upper open-wake branch in these cases, there may exist other 
closed-wake solutions which serve as the continuation of the open-wake. The lift for 
the central branch (shown in dashes) is found to be practically zero with CJr < 0.02. 

5. The single-surface airfoil 
5.1. Indeterminacy of a type ( d )  flow 

A simplified version of type ( d )  flow is represented by a cambered airfoil of zero 
thickness, commonly referred to as the ‘single-surface airfoil ’, shown in figure 13 (a ) .  
In  this case, the eddy can be assumed to break away right a t  the leading edge (x = 0) 
and, for simplicity, a fully attached boundary layer is assumed on the concave, 
lower side. The latter assumption necessarily places a restriction on the lower limit 
of incidence range. With this restriction, the analysis reduces (see $3.5) essentially to 
the determination of three unknowns, namely the reattachment location 1 and the 
second breakaway location s and the eddy pressure -u, (see figure 13a). The 
criterion (3.5) is not needed at the known breakaway point (x = 0), and is applied 
only a t  the second breakaway location (x = 8 ) .  As indicated in $3, a complete 
determination of this steady body-scale flow is lacking ; an additional condition, such 
as a specification of the eddy pressure, is required for the final solution. 

This description includes the flat plate a t  incidence (figure 13b) as a special case 
and, as such, is theoretically interesting in that the open wake in this type of flow 
may now account for the pressure drag which is roughly the incidence angle 
multiplied by the lift. A peculiar feature of this model is that even if the boundary 
layers on both sides of the plate were to remain fully attached, i.e. s = 1 ,  the open 
wake cannot be made to vanish and the indeterminacy would still remain. The flow 
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structure resembles in certain aspects the single-burbling theory of Witoszynski & 
Thompson (1934). If the breakaway were assumed to occur at a x = s upstream of the 
trailing edge, which is close enough to the trailing edge that (1 - s) is small compared 
to unity but large compared to the triple-deck width ( e3 ) ,  this indeterminacy may be 
eliminated. With this stipulation, and a provisional value of h M 0.332 (cf. the earlier 
discussion on type ( d )  flow in $3.5), the lift on a flat plate a t  small and moderate 
attack angles can be obtained as a function of the attack angle; the valucs turn out 
to be comparable to  Schmitz’s (1942) data for Re = 104-105 below stall. Such a 
description must be viewed as being ad hoc, however. 

In  passing, we note that for a cambered airfoil which is not so thin (7 =+ 0), there 
is a critical attack angle for the breakdown of the attached boundary layer over the 
leading-edge region (Lighthill 1951 ; also Smith & Elliot 1985). However, for the type 
of single-surface airfoil considered here and below, the 7, if any, is supposed to be 
negligibly small compared to cr, and the breakdown mentioned can raise the critical 
value of 01/0- for a shock-free entry only slightly. 

5.2. The circular-arc airfoil with shock-free entry 

A much greater simplification of the single-surface airfoil problem occurs when the 
angle of attack is so adjusted as to  eliminate the leading-edge bubble completely; 
the problem is degenerated to that of type (a)  open wake. The analysis in this case 
(with fuller details presented in Cheng 1984) provides a compact data set which 
should be useful for performance analyses of avian/insect flight. This corresponds to 
a ‘ shock-free entry ’ for fluid particles riding along a streamline which wets the airfoil 
surface. As is well known, the angle of attack a for a circular-arc, zero-thickness 
airfoil a t  which the shock-free entry occurs is 01 = 0 according to the classical thin- 
airfoil theory (Munk 1924; Karmdn & Burger 1934). For the slightly viscous flow 
considered here, this angle has to be raised because the breakaway occurs on the top 
surface. For this case, an analytic solution for the breakaway location s can be 

, obtained for each reduced camber 6 = R e b .  Unlike the multitude of solutions in 
most other examples, the results of the breakaway location s, and related 
characteristics in this special case are unique, monotone functions of the reduced 
camber 6. Results for 5 ,  a /a ,  lift, drag and centre of pressure (taken from Cheng 
1984) are presented in figure 14(a, b)  as functions of 6. All properties shown in figure 
14(b) are surprisingly insensitive to a change in 6 as long as 6 2 0.35 ~ a fact useful 
for performance analyses for this flight regime. The (pressure) drag vanishes when 
the body-scale flow becomes fully attached and this occurs a t  a range of finite 
(though numerically small) 3 B 0.08, or Oi: B 0.027. This would appear to agree with 
the trend anticipated from Smith’s (1983) trailing-edge stall study cited earlier 
(§2.2), according to which the point of zero wall shear in the lower deck can move 
upstream away from the trailing edge. 

These results should be of considerable interest to students of insect/avian flight, 
as well as swimming propulsion of animals, not only for their realizable Re-range 
( 103-105), but for the reasonable hydrodynamic performance and stability charac- 
teristics achievable by a moderate camber cr. With a IJ = Re-& >, 0.35Re-a (cf. 
figure 14a, b ) ,  one can base the analysis on the simple formula C, M 1.760- and C, = 
CD0 +0.136Ck. Hence, a unit-order lift coefficient and an optimum lift/drag ratio in 
the range 5-10 are attainable even in the presence of massive flow separation in this 
case. (Note, the maximum camber height of this airfoil is $cr.) Equally attractive are 
perhaps the almost universal centre of pressure location, qP, and the trim incidence 
angle, E = a/cr = 1/3. which are affected little by the Reynolds number. 
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FIGURE 14. (a )  Breakaway location and incidence angle of a singleisurface, circular-arc airfoil for 
a smooth shock-free entry as a function of reduced camber d =- Renu. ( b )  Normalized lift, centre- 
of-pressure location and drag for the same airfoil as a function of reduced camber (from Cheng 
1984). 

6. Discussion 
In the foregoing study, we have examined several examples of steady-flow models 

of laminar breakaway for airfoils with thickness, incidence or camber of order &, i.e. 
R e d .  Applying the triple-deck breakaway criterion and assuming a stagnant 
wakeleddy model, multiple steady states representing body-scale flows with open 
and closed wakes and other eddy configurations are found to be admissible in certain 
parts of the unit-order 7e-i domain. In  the (parameter) domain where the boundary- 
layer approximation holds uniformly (in space), the study indicates that it may not 
be the only self-consistent description of the global flow in a steady state. These 
solution bifurcations suggest that lift hysteresis, symmetry breaking and other forms 
of anomalies can also occur in purely laminar steady flows. The paper summarizes 
and extends an earlier development (Cheng & Smith 1982 ; Cheng 1984, 1985 ; Cheng 
& Lee 1985) to allow a finite wake. As demonstrated by the example, the transition 
from an open-wake solution to one with a closed wake need not be abrupt, in which 
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the Kirchhoff model with pc = p ,  can be recovered and approached asymptotically 
from a closed-wake model. 

The most serious limitation of the present analysis from the viewpoint of flow 
physics is the steady-state assumption ; this, together with the complexities and 
subtlety of the various issues, makes the significance of the results lie more, perhaps, 
in what they suggcst than in themselves. The solutions and their qualitative features 
may best be viewed as useful conjectures towards better model construction. The 
bifurcation features have brought out quite clearly the need for an examination of 
their instability and their physical relevance. This need is presumably more critical 
for flow in the high subcritical Re-range (say Re - 105-106). If more than one of these 
multiple states is proved to be stable, the large-time behaviour of interest must 
depend on the initial conditions and the evolution history that follows ; the 
dynamical models and computation programs used to assess the flow behaviour in 
question must therefore be time-accurate. Nevertheless, the many CFD codes with 
artifices for accelerating convergence to the steady state could also be helpful to this 
type of study, inasmuch as they may add or suggest new members to the multiple 
steady-state solutions not accessible via the present approach. One may caution, 
however, that certain algorithms used, as well as certain symmetry properties 
implicit in the computation, could very well dictate a preferred choice for certain 
steady states. 

The time-dependent aspect not treated here will be important not only for the flow 
instability consideration but also with regards to the possibility of arriving a t  a 
meaningful long-time-averaged description for the nonlinear body-scale flow, which 
often exhibits hysteresis, symmetry breaking and other anomalies. I n  passing, we 
note that, for most unsteady body-scale flows of aerodynamic interest, the 
characteristic timescale is an order e-2 longer than the flow transit time of the triple 
deck which may thus be treated as being quasi-steady, leaving the Sychev criterion 
(2.3) for the steady state unchanged. 

Whereas the definition of the triple-deck interaction parameter ? = ~ R e k  would 
indicate a relatively insensitive dependence on the Reynolds number, a strong Re- 
dependence is expected in the vicinity of critical values of .? corresponding to branch 
points and cut-off points where the steady-state flow structure changes branchltype. 
Therefore, the degree of Re-dependence is non-uniform and becomes more critical 
near a singularity in the parametric domain of the steady-state solution. 
Computational and laboratory experiments designed to verify the significance of this 
parameter and flow sensitivity to Re-changes should pay attention to the existence 
of these critical values of the reduced thickness or incidence. 
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